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Abstract

The e�ective medium theory for the coupled phenomena of heat conduction and mass di�usion of solute in
heterogeneous media has been derived. The theory has been applied to a barrier with adaptive conductive and
di�usive characteristics to be used for control of heat ¯ow and mass ¯ow of species. The barrier consists of a

mixture of small solid particles of ellipsoidal shape which are randomly distributed in a carrier ¯uid. Volume
fraction of the particles is small and variation in conductive±di�usive properties of the barrier is achieved by
changing orientation of the particles. This analysis gives an estimate to what a degree the solute ¯ow can be
controlled by both bulk concentration and temperature gradient applied to the walls of the barrier. In¯uence of

di�erent parameters like ratios of conductive and di�usive properties of particles and the carrier ¯uid, solubility
ratio of the di�using species in the ¯uid and in the particle, class of particle shapes, particle aspect ratio and volume
fraction as well as thickness of the barrier on the species mass ¯ow have been studied in detail. 7 2000 Elsevier

Science Ltd. All rights reserved.

1. Introduction

In the past few years di�erent devices were proposed

for a control of di�erent modes (conduction, convec-

tion, radiation) of heat and mass transfer through

``smart walls''. They were generally based on an idea

of dynamical tuning of corresponding properties of

these walls [1±5].

One possible way of the tuning can be achieved by

varying internal pressure of a gas, like hydrogen,

which, due to its high thermal conductivity, can sub-

stantially change the e�ective conductance of the por-

ous medium ®lling the wall. This idea had found
application in thermal insulations proposed for build-

ing design [5]. It was veri®ed experimentally for glass-
®ber ®lled super insulation panels and allowed the
panels to adjust heat gains (or heat losses) to the

actual environmental conditions (ambient temperature
and insolation). Switching between low and high
hydrogen pressure in the insulation was achieved by
electrical heating or cooling of a metal hydride con-

tainer. The change of temperature of the container
caused a release or absorption of the hydrogen.
The other way of varying properties of the wall is

the use of electro- or magneto-rheological ¯uids. Such
¯uids are formed by suspensions of highly, electrically
or magnetically, polarizable, micron-sized, almost

spherical particles distributed in suitable carrier ¯uids.
In the electro-rheological ¯uids, the electric ®eld of a
su�cient strength gives rise to formation of long par-

ticle chains (known as electrically induced ®bration).
When the main mode of heat transfer is radiation, this
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Nomenclature

A external area of the medium or
of the particle

CTT, CTc, CcT, Ccc second order tensors de®ned in

Eq. (38)
c solute concentration
Dc generalized solute di�usivity

de®ned in Eq. (3)
�Dc=M �� complex di�usivity de®ned in

Eqs. (9) and (10)

Dcf solute di�usivity in the ¯uid
Dcs solute di�usivity in the particles
Def�

c e�ective Soret coe�cient deter-
mined using only the ®rst term

from the expansions of the
microstructure functions, de®ned
in Eq. (27)

Def
c? component of tensor Def�

c in the
direction normal to the barrier

DT generalized Soret coe�cient

de®ned in Eq. (3)
D�T complex Soret coe�cient de®ned

in Eq. (3)

DTf Soret coe�cient in the ¯uid
DTs Soret coe�cient in the particles
Def�

T e�ective Soret coe�cient deter-
mined using only the ®rst term

from the expansions of the
microstructure functions, de®ned
in Eq. (27)

Def
c? component of tensor Def�

T in the
direction normal to the barrier

j solute ¯ux

j solute ¯ux in the direction nor-
mal to the barrier

jf solute ¯ux in the direction nor-
mal to the barrier for the case of

pure ¯uid
L length of the major (minor)

dimension of the rod-like (disk-

like) particle
l microdimension
M generalized solubility de®ned in

Eq. (3)
m ratio of solute solubilities in the

particle and in the carrier ¯uid

n external unit vector normal to
the surface

R radius of the spheroidal particle
P particle shape tensor

P component of the tensor in the
direction perpendicular to bar-
rier faces

P� tensor de®ned in Eq. (41)
q heat ¯ux
q heat ¯ux in the direction perpen-

dicular to barrier faces
T temperature
V volume of the medium or

volume of the particle
v volume fraction
x, y location vectors

z coordinate axis perpendicular to
barrier faces

D barrier thickness
d Dirac's function

lT generalized thermal conductivity
de®ned in Eq. (3)

l�T complex thermal conductivity

de®ned in Eq. (3)
lTf thermal conductivity of the ¯uid
lTs thermal conductivity of the par-

ticles
lef

T e�ective thermal conductivity
de®ned in Eq. (24)

lef�
T e�ective thermal conductivity

determined using only the ®rst
term from the expansions of the
microstructure function, de®ned

in Eq. (27)
lef

T? component of tensor lef�
T in the

direction normal to the barrier

lc generalized Dufour coe�cient
de®ned in Eq. (3)

�lc=M �� complex Dufour coe�cient

de®ned in Eq. (3)
lcf Dufour coe�cient of the ¯uid
lcs Dufour coe�cient of the par-

ticles

lef
c e�ective Dufour coe�cient

de®ned in Eq. (24)
lef�

c e�ective Dufour coe�cient deter-

mined using only the ®rst term
from the expansions of the
microstructure function, de®ned

in Eq. (27)
lef

c? component of tensor lef�
c in the

direction normal to the barrier

e�e�� aspect ratio of the particle, e �
�2R�=L for the disk-like particles,
e� � �2R�=L for the rod-like par-
ticles

kT ¯uid Dufour coe�cient/thermal
conductivity ratio

kc ¯uid Soret coe�cient/solute dif-

P. Furmanski, J.M. Floryan / Int. J. Heat Mass Transfer 44 (2001) 215±233216



process of ®bration causes the wall to go from an

opaque state to a state highly transparent to radiation
[2].

In electro- or magneto-rheological suspensions of

ferromagnetic powders, thermal conductivity (or mass

di�usivity) is increased in the direction of the applied
®eld (electric or magnetic) and reduced in the direction

perpendicular to it. Increase of the thermal conduc-

tivity (mass di�usivity) and viscosity of the ¯uids,

during their ¯ow, gives rise to an almost three-fold

increase in the convective heat (or mass) transfer coe�-

cient [1]. This may cause signi®cant increase in e�-

ciency of heat (or mass) exchangers. Application of a
rotating magnetic ®eld produces two kinds of motion

in the layer of a ferromagnetic suspension. The ®rst

one consists of microscopic intensive vortex motion,

due to rotation of the aggregates, and the second one

involves macroscopic ¯ow of the entire ¯uid. This

means that the augmentation of heat or mass transfer
in the system can be ascribed to the convective trans-

port (macroscopic ¯ow in the suspension) as well as to

the pseudoturbulization of the layer by microrotation

of the particle aggregates [1].

The third method of changing properties of the

``smart wall'' is the use of nonspherical particles whose

orientation can be controlled. Coating of the particles

with a thin layer of either ferromagnetic or ferroelec-

tric material will allow for increase of the torque

necessary for rotation of the particles as well as for

matching of densities of the particles and the carrier
¯uid. Upon application of either the electric or mag-

netic ®eld, orientation of the particles may change. As

the particles have properties di�erent than the carrier

¯uid, the e�ective conductance of the barrier varies

depending on the state of orientation of the particles.

The greater the range of variation in the conductance,
the higher e�ectiveness of the barrier. This way of

changing properties of the barrier has been previously

studied by Furmanski and Floryan [3,4] for the case of

heat conduction in the layer of a ¯uid with suspended

rod-like and disk-like particles (in the form of prolate

and oblate spheroids). The analysis was carried out for
a layer of ®nite thickness and the relative (particle/

¯uid) thermal conductivity, particle aspect ratio and

their volume fraction were varied. It was found that

rotation of the particles by 908 can result in increasing

of the heat ¯ux through the barrier by several times.

This increase was not sensitive to a small misalignment

of the particles. The rod-like particles were more e�ec-
tive when the thermal conductivity of the particles was

greater than that of the ¯uid [3]. The opposite e�ect

was observed for the disk-like particles [4]. They hap-

pened to be more e�ective when their thermal conduc-

tivity was smaller than that of the ¯uid. In both cases

of particle shape, the e�ectiveness of heat ¯ow control

was higher due to greater di�erence in the thermal
conductivities of the suspension components. It was

also found that an increase in the range of the heat

¯ow control can be achieved by using longer particles

and by increasing their volume fraction. The wall

e�ects, associated with the ®nite thickness of the layer

of suspension, tended to decrease the heat ¯ow as com-

pared to the case of an unbounded medium. They

were especially pronounced for larger particles and for
higher volume fractions of the particles.

The problem of heat and mass ¯ow through a sus-

pension is most conveniently analyzed using the e�ec-

tive medium approach that is popular in the analysis
of transfer processes in heterogeneous media ([6±10].

This approach is based upon the replacement of the

multicomponent medium by a continuum with either

constant or continuously varying e�ective properties.

In the case of the mass ¯ow, such approach was

utilized in studies of solute ¯ow in stagnant suspen-

sions under non-reacting and reacting conditions
[11,12]. For non-reacting conditions an analogy

between the mass di�usion and the thermal conduction

is valid in the bulk. This analogy may not be valid on

fusivity ratio
jTT microstructure function associ-

ated with temperature ®eld

jTc microstructure function associ-
ated with di�usion-thermo e�ect

jcT microstructure function associ-

ated with thermo-di�usion e�ect
jcc microstructure function associ-

ated with concentration ®eld

sTT particle/¯uid thermal conduc-
tivity ratio

sTc particle/¯uid Dufour coe�cient

ratio

scT particle/¯uid Soret coe�cient
ratio

scc particle/¯uid solute di�usivity

ratio
y characteristic function de®ned in

Eq. (3)

O con®guration or pattern of dis-
tribution of constituents in the
suspension

1 unit second order tensor
r Nabla operator
{�} ensemble averaging
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the boundaries separating di�erent constituents due to
the solubility condition that usually leads to a jump in

the solute concentration at the particle±¯uid interface
[13±15]. When convection is present, additional dis-
persion of the solute may occur due to ¯uctuations in

¯uid velocity. This dispersion is included in the e�ec-
tive di�usivity of the medium in the form of velocity
dependent terms [16]. For large variation of concen-

tration ®elds in the medium, these terms may have a
nonlocal character [17].
Two averaging techniques are usually applied in

order to carry out homogenization leading to the e�ec-
tive medium theory: volume averaging over small
physical regions representative of the structure of the
medium [18] and ensemble averaging over the ensemble

of possible realizations of microgeometry of the
medium [10,14].
Phenomena of heat and mass transfer can be

mutually coupled (Defourt and Soret e�ects) [19]. This
enables one to control, for example, the mass ¯ow
through a ``smart wall'' using temperature di�erence

applied to the surfaces bounding the wall. Moreover,
in the mass transfer problem the ¯uid and the particles
may have di�erent solubilities with respect to the dif-

fusing species. In this paper we are going to address
these problems and also study how such cross-e�ects
e�ect the possible range of control of the solute ¯ow
through the layer of suspension. The analysis is based

on the e�ective medium theory using the ensemble
averaging technique [20]. The particles are assumed to
have random distribution and to constitute a small

volume fraction of the mixture (in order to provide
enough space for their free rotation). Section 2 dis-
cusses adaptation of the e�ective medium theory to

coupled transport phenomena in a heterogeneous med-
ium. In Section 3, the theory is applied to the station-
ary coupled heat and mass ¯ow through the barrier.
Results of parametric study of various factors e�ecting

di�usive mass ¯ow through the barrier for both
coupled and uncoupled mass transfer problem are
given in Section 4 with a special prominence given to

the solubility e�ects. Finally, Section 6 provides a
short summary of the main conclusions.

2. The e�ective medium theory for coupled transport

processes

2.1. Preliminaries

Let us consider coupled phenomena of heat transfer
and the transport of a dilute solute through a hetero-
geneous suspension consisting of a carrier ¯uid and the

particles dispersed in it. In each constituent, the heat
transfer and the di�usive mass ¯ow are caused both by
the temperature and the concentration gradients

ÿq � lTrT� �lc=M�r�Mc�,

ÿ j � DTrT� �Dc=M�r�Mc�,
�1�

where lT and Dc are respectively, the thermal conduc-

tivity and the solute di�usivity, lc and DT stand for
the di�usion-thermo e�ect coe�cient (Dufour coe�-
cient) and the thermo-di�usion e�ect coe�cient (Soret

coe�cient), respectively, T denotes the temperature, M
stands for the solute solubilty, c denotes the solute
concentration, and r is the gradient operator.
Heat ¯ux q and mass ¯ux j satisfy steady state con-

servation equations

r � q � 0, r � j � 0 �2�
and are functions of the position vector x and the con-
®guration O i.e., they are functions of the pattern of
distribution of the particles. Ideal thermal contact con-
ditions are assumed at the particle±¯uid interface.

Equilibrium condition at the particle±¯uid interface
leads to a step change in the concentration c of the dif-
fusing species. This e�ect is caused by a di�erent solu-

bility M of the species in the particles and in the ¯uid.
The product of the concentration and the solubility,
which we shall refer to as activity, is continuous

through the interface. All properties appearing in Eq.
(1) are understood to be generalized functions and can
be expressed in the following way

lT�x, O� � lTsy�x, O� � lTf

�
1ÿ y�x, O��,

lc�x, O� � lcs=my�x, O� � lcf

�
1ÿ y�x, O��,

DT�x, O� � DTsy�x, O� �DTf

�
1ÿ y�x, O��,

Dc�x, O� � Dcs=my�x, O� �Dcf

�
1ÿ y�x, O��,

M�x, O� � my�x, O� � �1ÿ y�x, O��: �3�

The characteristic function y is equal to unity for the
location inside a particle and is equal to zero inside the

¯uid. The subscripts s and f correspond to properties
of the particles (solid) and the ¯uid, respectively.
In the e�ective medium approach, two constituent

media are treated as a pseudohomogeneous one with

e�ective properties which account for the properties of
the constituents as well as for their distribution in the
medium. The notions of temperature and concen-

tration of the di�using species in this approach should
be understood as certain mean quantities averaged
either over the representative volume or statistically

averaged over an ensemble of possible con®gurations.
The latter way of averaging will be used in the present
analysis.
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In order to obtain equations describing macroscopic
¯ow of heat and mass in the medium, Eq. (1) and the

conservation equations (2) have been ensemble aver-
aged resulting in

r � fqg � 0, r � �j	 � 0, �4�

ÿfqg �
�
lTrT

	� ��lc=M�r�Mc�	,
ÿ �j	 � fDTrTg �

��Dc=M�r�Mc�	: �5�

The above equations have to be supplemented with a
``closure scheme'' that will allow to express the mean
heat ¯ux q and the mean mass ¯ux j by the mean tem-

perature {T } and the mean concentration {c } of the
di�using species. Eq. (5) can be used to derive the
``closure scheme'' if the microscopic temperature T and

the microscopic concentration c were expressed as
functions of the macroscopic ®elds {T } and {c }.

2.2. Relations between the microscopic and macroscopic

(mean) temperature and concentration ®elds

We begin by substituting Eq. (2) into Eq. (1) and

transforming the result into the following form

lTfr 2T� lcfr 2�Mc�
� r � �l 0TrT� �lc=M� 0r�Mc�� � 0, �6�

DTfr 2T�Dcfr 2�Mc�
� r � �D 0TrT� �Dc=M� 0r�Mc�� � 0, �7�

where

l 0T � lT ÿ lTf , �lc=M� 0� lc=Mÿ lTf ,

D 0T � DT ÿDTf , �Dc=M� 0� Dc=MÿDTf �8�

Eqs. (6) and (7) can be treated as a set of equations
for r 2T and r 2�Mc� which, when solved, leads to the

following expressions

r 2T� r � �l�TrT� �lc=M��r�Mc�� � 0, �9�

r 2�Mc� � r � �D�TrT� �Dc=M��r�Mc�� � 0, �10�

where

l�T �
Dcfl

0
T ÿ lcfD

0
T

DcflTf ÿ lcfDTf

, �lc=M��� Dcfl
0
c ÿ lcfD

0
c

DcflTf ÿ lcfDTf

,

D�T �
ÿDTfl

0
T � lTfD

0
T

DcflTf ÿ lcfDTf

, �Dc=M��� ÿDTfl
0
c ÿ lTfD

0
c

DcflTf ÿ lcfDTf

:

Next we introduce Green's function de®ned by

r 2G�x, y� � d�x, y� � 0 in V,

G�x, y� � 0 on A,
�11�

where d�x, y� is Dirac delta function and V and A are
the volume and the surface of the medium, respect-
ively.

If the second term on the left-hand side of Eqs. (9)
and (10) can be treated as the heat or solute source
terms, then the solution of these equations can be for-

mally written as

T�x, O� � ÿ
�
V

rG�x, y� �
�
l�TrT�y, O�

� �lc=M��rMc�y, O�� dV

ÿ
�
A

rG�x, y� � nT�y, O� dA, �12�

Mc�x, O� � ÿ
�
V

rG�x, y� �
�
D�TrT�y, O�

� �Dc=M��rMc�y, O�� dV

ÿ
�
A

rG�x, y� � nMc�y, O� dA, �13�

where n is the external unit vector perpendicular to A.
After ensemble averaging of Eqs. (12) and (13), speci-
fying the Dirichlet type boundary conditions for T and

c on the external boundaries of the suspension and
subtracting the result from Eqs. (12) and (13), the
microscopic temperature T and the microscopic ac-
tivity Mc can be expressed as

T�x, O� � �T�x�	ÿ �
V

rG�x, y� �
h�
l�TrT�y, O�

ÿ �l�TrT�y�	�� ��lc=M��rMc�y, O�

ÿ ��lc=M��rMc�y�
	�i

dV, �14�

Mc�x, O� � �Mc�x�	ÿ �
V

rG�x, y�

�
h�
D�TrT�y, O� ÿ

�
D�TrT�y�

	�
� ��Dc=M��rMc�y, O�
ÿ ��Dc=M��rMc�y�

	�i
dV: �15�

We seek the solution of Eqs. (14) and (15) in the fol-
lowing form
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T�x� � �T�x�	� �
V

�
jTT�x, y, O�r�T�y�	

� jTc�x, y, O�r�Mc�y�	� dV, �16�

Mc�x� � �Mc�x�	� �
V

�
jcT�x, y, O�r�T�y�	

� jcc�x, y, O�r�Mc�y�	�dV: �17�

Equations for the unknown vector functions jTT, jTc,
jcT and jcc (microstructure functions) can be found
by substitution of the above relations into Eqs. (14)
and (15) and demonstrating that the resultant

equations are independent of the macroscopic ®elds
{T } and {Mc }. This procedure results in the following
expressions

jTT�x, O� � ÿ
�
V

rG�x, y� �
h�
l�T
ÿ
d1� rjTT

�
ÿ �l�Tÿd1� rjTT

�	�
� ��lc=M��rjcT ÿ

��lc=M��rjcT

	�i
dV,

�18�

jTc�x, O� � ÿ
�
V

rG�x, y� �
h�
l�TrjTc ÿ

�
l�TrjTc

	�
� ��lc=M��

ÿ
d1� rjcc

�
ÿ ��lc=M��

ÿ
d1� rjcc

�	�i
dV, �19�

jcT�x, O� � ÿ
�
V

rG�x, y� �
h�
D�T
ÿ
d1� rjTT

�
ÿ �D�Tÿd1� rjTT

�	�
� ��Dc=M��rjcT ÿ

��Dc=M��rjcT

	�i
dV,

�20�

jcc�x, O� � ÿ
�
V

rG�x, y� �
h�
D�TrjTc ÿ

�
D�TrjTc

	�
� ��Dc=M��

ÿ
d1� rjcc

�
ÿ ��Dc=M��

ÿ
d1� rjcc

�	�i
dV, �21�

where 1 denotes the unit second order tensor.

2.3. Constitutive relations

When the relations between microscopic and macro-
scopic temperature and activity ®elds (Eqs. (16) and
(17)) are known, it is easy to obtain relations between

the mean (macroscopic) heat ¯ux and the mean
(macroscopic) mass ¯ux, on one side, and the mean
(macroscopic) temperature and the mean (macro-

scopic) solute concentration, on the other side. This
can be simply achieved by substitution of Eqs. (16)

and (17) and Eq. (A6) from Appendix A into Eq. (5)

ÿ�q�x�	 � �
V

lef
T �x, y� � r�T�y�	 dV

�
�
V

lef
c �x, y� � r�c�y�	 dV, �22�

ÿ�j�x�	 � �
V

Def
T �x, y� � r�T�y�	 dV

�
�
V

Def
c �x, y� � r�c�y�	 dV, �23�

where the e�ective thermal conductivity lef
T , e�ective

Dufour coe�cient lef
c , e�ective Soret coe�cient Def

c

and e�ective solute di�usivity Def
T are de®ned by the

expressions

lef
T �

�
lT

ÿ
d1� rjTT

�	� �lcrjcT

	
,

lef
c �

�
lTMPeqrjTc

	� �lcMPeq

ÿ
d1� rjcc

�	
,

Def
T �

�
DT

ÿ
d1� rjTT

�	� �DcrjcT

	
,

Def
c �

�
DTMPeq � rjTc

	� �DcMPeq

ÿ
d1� rjcc

�	
,

�24�
where Peq stands for the concentration equilibrium dis-
tribution function.
The constitutive relations, Eqs. (22) and (23), are

nonlocal. The macroscopic heat (or mass) ¯ux for any
location x in the suspension depends not only on the
macroscopic temperature gradient and the macroscopic

concentration gradient in the same location, but also
on the distribution of these gradients for all other lo-
cations y in the medium.

In general, the e�ective material functions do not
describe the e�ective properties of the medium; they
describe the e�ective properties of the suspension only
in these locations where they are not a�ected by the

presence of the boundaries of the medium.

2.4. Expansions for the slowly varying ®elds

If the macroscopic temperature in the suspension is
varying slowly in comparison with the microscopic
variation of the medium properties, expansions of the

following type [20] can be utilized

jTT�x, y� �
�
j�TT�x� ÿ x

�
d�x, y� � lj��TT�x� � rd�x, y� � � � � ,

jTc�x, y� � j�Tc�x�d�x, y� � lj��Tc�x� � rd�x, y� � � � � ,
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jcT�x, y� � j�cT�x�d�x, y� � lj��cT�x� � rd�x, y� � � � � ,

jcc�x, y� �
�
j�cc�x� ÿ x

�
d�x, y� � lj��cc �x� � rd�x, y� � � � � ,

�25�

for each of the functions jTT, jTc, jcT, jcc: Symbol l

here stands for the characteristic microdimension in
the heterogeneous medium [8].
When these expansions are truncated after the ®rst

term and substituted into Eqs. (22) and (23), the con-
stitutive relations reduce to the local relations, similar
in form to the two relations given in Eq. (1), i.e.,

ÿ�q�x�	 � lef�
T �x� � r

�
T�x�	� lef�

c �x� � r
�
c�x�	,

ÿ�j�x�	 � Def�
T �x� � r

�
T�x�	�Def�

c �x� � r
�
c�x�	: �26�

The e�ective material functions (tensors) assume the

following form

lef�
T � lTf1� l 0Tp

�ÿ
yrj�TT

�	� l 0cp

�
yrj�cT

	
,

lef�
c � lcfMPeq1� ÿlTpMPeq

� 0�ÿyrj�Tc

�	
� ÿlcpMPeq

� 0�yrj�cc

	
,

Def�
T � DTf1�D 0Tp

�ÿ
yrj�TT

�	�D 0cp

�
yrj�cT

	
,

Def�
c � DcfMPeq1� ÿDTpMPeq

� 0�ÿyrj�Tc

�	
� ÿDcpMPeq

� 0�yrj�cc

	
: �27�

where lef�
T , lef�

c , Def�
T and Def�

T are the e�ective thermal

conductivity, e�ective Dufour coe�cient, e�ective
Soret coe�cient and e�ective solute di�usivity, respect-
ively, corresponding to the ®rst term of expansions,

Eq. (25). The integro-di�erential equations, Eqs. (18)±
(21), are also simpli®ed by introducing the above
expansions and can be written as

j�TT�x, O� � xÿ
�
V

rG�x, y� �
h�
l�Trj�TT ÿ

�
l�Trj�TT

	�
� ��lc=M��rj�cT ÿ

��lc=M��rj�cT

	�i
dV,

�28�

j�Tc�x, O� � ÿ
�
V

rG�x, y� �
h�
l�Trj�Tc ÿ

�
l�Trj�Tc

	�
� ��lc=M��rj�cc ÿ

��lc=M��rj�cc

	�i
dV,

�29�

j�cT�x, O� � ÿ
�
V

rG�x, y� �
h�
D�Trj�TT ÿ

�
D�Trj�TT

	�
� ��Dc=M��rj�cT ÿ

��Dc=M��rj�cT

	�i
dV,

�30�

j�cc�x, O� � ÿ
�
V

rG�x, y� �
h�
D�Trj�Tc ÿ

�
D�Trj�Tc

	�
� ��Dc=M��rj�cc ÿ

��Dc=M��rj�cc

	�i
dV:

�31�

In the case of a heterogeneous medium, considered
here, one of the constituents exists in the form of sep-
arate particles. The volume integrals, appearing on the

right-hand sides of Eqs. (28)±(31), are nonzero only in
the particles. After using Green's theorem for changing
from volume to surface integrals, Eqs (28)±(30) take
the following form

j�TT � l�Tp

�
A1

Grj�TT � n dA1 � l�cp

�
A1

Grj�cT

� n dA1 �
X
j�2

"
l�Tp

�
Aj

Grj�TT � n dAj

� l�cp

�
Aj

Grj�cT � n dAj

#

� x� l�Tp

�
A

G
�
yrj�TT

	 � n dA

� l�cp

�
A

G
�
yrj�cT

	 � n dA, �32�

j�Tc � l�Tp

�
A1

Grj�Tc � n dA1 � l�cp

�
A1

Grj�cc

� n dA1 �
X
j�2

"
l�Tp

�
Aj

Grj�Tc � n dAj

� l�cp

�
Aj

Grj�cc � n dAj

#

� l�Tp

�
A

G
�
yrj�Tc

	 � n dA� l�cp

�
A

G
�
yrj�cc

	
� n dA, �33�
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j�cT �D�Tp

�
A1

Grj�TT � n dA1 �D�cp

�
A1

Grj�cT � n dA1

�
X
j�2

"
D�Tp

�
Aj

Grj�TT � n dAj

�D�cp

�
Aj

Grj�cT � n dAj

#

� D�Tp

�
A

G
�
yrj�TT

	 � n dA�D�cp

�
A

G
�
yrj�cT

	 � n dA,

�34�

�j�cc �D�Tp

�
A1

Grj�Tc � n dA1 �D�cp

�
A1

Grj�cc � n dA1

�
X
j�2

"
D�Tp

�
Aj

Grj�Tc � n dAj

�D�cp

�
Aj

Grj�cc � n dAj

#

� x�D�Tp

�
A

G
�
yrj�Tc

	 � n dA

�D�cp

�
A

G
�
yrj�cc

	 � n dA: �35�

On solving Eqs. (32)±(35) we can obtain functions jTT,
jTc, jcT and jcc for any location in the medium (either

inside the particles or inside the ¯uid) for any distri-
bution of the particles in the suspension. The second
and third terms on the left-hand sides of these

equations describe the in¯uence of the particle that is
the closest to the considered location. The fourth term
gives in¯uence of other, more distant particles. The

right-hand sides of these equations are independent of
any particular distribution of the particles and is re-
lated to the mean temperature and concentration ®elds
in the medium.

The standard solution of these equations consists of
considering, in sequence, the in¯uence of more and
more distant particles on the functions jTT, jTc, jcT

and jcc, starting with the closest one (the ®rst one).
Usually this in¯uence quickly diminishes if the volume
fraction of the particles in the suspension is small and

when clustering of the particles is absent. This
approach will be followed in the subsequent consider-
ations. It is worth to note here that addition of any
new particle in the medium will modify the right-hand

sides of Eqs. (32)±(35).

3. Heat and solute ¯ow through a barrier

3.1. Description of the barrier

Let us consider a barrier consisting of a suspension
layer of thickness D that extends to in®nity in the

remaining directions (Fig. 1). The suspension is made
of a carrier ¯uid with randomly distributed axi-sym-

metric particles. The particles have spheroidal shape
with length L and radius R so that their aspect ratio is
e� � L=�2R�: By varying the particle aspect ratio di�er-

ent shapes of the particles may be obtained, ranging
from ¯attened disk-like particles (oblate spheroids with
E� < 1), to spheres �e� � 1), to elongated rod-like par-

ticles (prolate spheroids with e� > 1). It is assumed
that the axes of symmetry of the particles are parallel
to each other with their orientations described by

angle g (Fig. 1a). This orientation can be changed by
external means (e.g., by applying electric or magnetic
®eld [21]). The volume fraction of the particles is
assumed to be su�ciently small to permit their free ro-

tation.
Simultaneous heat conduction and solute di�usion

take place in the suspension. The processes are coupled

and either heat or mass ¯ow may occur due to di�er-
ence of temperature (T1 > T2) or due to di�erence of

Fig. 1. A schematic diagram of the barrier that can be used

for control of heat and solute ¯ow.
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concentrations of the solute (c1 > c2) on the opposite
faces of the barrier. The solution of the di�using

species is treated as dilute so that locally Fick's law is
applicable. It is further assumed that the whole system
is in a steady state and that no convection occurs.

The main objective of this paper is to study how
orientation of the particles a�ects the solute ¯ux as a
function of di�erent parameters characterizing the bar-

rier and as a function of di�erent ways of forcing the
solute ¯ow (concentration di�erence or temperature
di�erence). The relevant parameters are: (i) material

parameters, like lTs=lTf , Dcs=Dcf , lcs=lcf , DTs=DTf ,
lcf=lTf , DTf=Dcf , m; (ii) structural parameters, like class
of particle shapes (disk-like and rod like), particle
aspect ratio e, particle volume fraction v, angle g of

orientation of particles, and (iii) geometrical par-
ameters, like D=�2R�: As the in¯uence of some par-
ameters was found to be similar to the previously

studied pure heat conduction problem [3,4], a special
attention has been focused on the parameters a�ecting
mass di�usion and those a�ecting coupling between

heat conduction and mass di�usion.
The problem of solute ¯ow through a barrier is

three-dimensional (on the microscopic level) due to

complicated structure of the suspension. The advan-
tage of studying this problem using the e�ective med-
ium approach is that it reduces the original problem to
a one-dimensional one on the macroscopic level. Eq.

(26) can be simpli®ed to the following form

ÿfqg � lef
T?�z�

dfTg
dz
� lef

c?�z�
dfcg
dz

, �36�

ÿfjg � Def
T?�z�

dfTg
dz
�Def

c?�z�
dfcg
dz

, �37�

where {q }, { j } stand for the macroscopic heat and
solute ¯uxes in the direction of the bulk ¯ow (direction

z ) and symbol _ denotes components of the respective
e�ective material tensors in the same direction.

3.2. E�ective material tensors

In order to calculate either the heat or solute ¯ow
through the barrier, it is necessary to know the e�ec-
tive material tensors appearing in Eqs. (37) and (38).
As noted earlier, these tensors become e�ective proper-

ties of the suspension at a certain distance away from
the barrier faces. In deriving relations for the com-
ponents of these tensors, we will follow a procedure

which parallels the approach used in the study of pure
heat conduction problem. This will allow us to concen-
trate on the main assumptions and omit the laborious

derivations discussed previously in detail [3].
Firstly, let us note that due to the form of ex-

pressions for the material tensors, Eq. (27), only gradi-

ents of the microstructure functions are needed (the
characteristic function y is zero outside the particles).

These functions have a linear form in the case of an in-
®nite medium. Since our interest is only in the case of
small volume fraction of spherical particles, we assume

that these functions may retain a linear form even for
a bounded medium. We, therefore, write these func-
tions in the form

j�TT � C0
TT � CTT � uj, j�Tc � C0

Tc � CTc � uj,

j�cT � C0
cT � CcT � uj, j�cc � C0

cc � Ccc � uj, �38�

where uj � xÿ rj and rj stand for the position vectors
associated with the center of the jth particle (Fig. 1).
The assumption had been found to be strictly valid for

any distribution of spheroidal particles when their
volume fraction was small and when the gradient of
macroscopic temperature {T } was kept constant [20].

One should note, however, that the microstructure
functions may be nonlinear outside the particles.
Secondly, since our interest is in the case of small

volume fraction of the particles, we shall omit the

fourth term on the left-hand sides of Eqs. (32)±(35).
This means that only the in¯uence of the ®rst (i.e., the
closest) particle on the microstructure function in the

location x is retained. This assumption may need ad-
ditional explanations. In order to study the in¯uence
of the interparticle interactions on the heat or mass

¯uxes, a number of investigators employed expansions
of the temperature and/or concentration ®elds in terms
of the particle volume fraction v (or more correctly,

expansions in terms of a product of the number den-
sity of the particles and a cube of the largest dimension
of the particle). They concluded that the second term
in the expansion (the ®rst order in v ) corresponds to

an isolated particle while the higher terms take account
of the particle interactions. Some numerical simu-
lations [10] show that results based on the two-term

expansions are valid only for very small values of v (2±
4% for spherical particles, with the more restrictive
values for non-spherical ones). These results give rise

to claims that validity of analyses based on two-term
expansions (the single particle model) should be limited
to these very low volume fractions. Numerical simu-
lations for ordered arrays of particles as well as exper-

imental results contradict these conclusions. Validity
of, for example, Maxwell formula (spherical particles)
or Rayleigh formula (cylindrical in®nite ®bers), which

are derived from solution of a single particle problem,
was found to be much broader with respect to v [20].
The reason for this behavior is known and is related to

the manner in which the particles may interact. They
may interact directly, and this e�ect is described by the
third term on the left-hand sides of Eqs. (32)±(35), and
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indirectly by modifying the macroscopic temperature
or concentration ®eld around each particle. The inte-

grals on the right-hand side of Eqs. (32)±(35) corre-
spond to the latter form of interaction. Typically, in
any analysis based on the expansions in terms of par-

ticle volume fraction, indirect interaction are excluded.
This may lead to signi®cant discrepancies between the
results based on the one- (single particle) and multi-

term expansions already for very small volume frac-
tions. If both ways of interaction are included in the
analysis, it is found that their relative importance

depends on the form of distribution of the particles. If
clustering of the particles occurs, direct interactions
between the particles are dominant and a signi®cant
di�erence between the results based on the many par-

ticle analysis and the single particle analysis may be
observed already at very small volume fractions. But if
no clustering occurs, i.e., the particles are well separ-

ated as, for example, in the ordered arrays of particles,
then the indirect way of interaction is more important
except for very high volume fractions of the particles.

In the present case, the particles are well separated and
thus the direct interactions can be omitted without lim-
iting the validity of the results to extremely small

volume fractions.
Equations for the unknown tensors CTT, CTc, CcT

and Ccc can be found by substituting Eq. (38) into
Eqs. (32)±(35) and specifying the location vector x for

the microstructure functions to correspond to the in-
terior of the particle. The resulting surface integrals
have the form�
A1

Gn dA1 � P � �u1 ÿ F�u1 �
�
, �39�

where P is the Eshelby shape tensor solely dependent
on the shape of the particle and on its aspect ratio.
The form of the vector function F follows from appli-
cation of the method of re¯ections [3] for deriving an

appropriate expression for the Green function G and it
is de®ned as

F�u� �
X1
k�0

h
f
ÿ
u� r�k; 2kD� 2z 0

�
� f
ÿ
u� r�k; 2�k� 1�Dÿ 2z 0

�i
ÿ
X1
k�1

h
f
ÿ
u� r�k; 2kD

�� f
ÿ
u� r�k; 2�k� 1�D�i,

where r�k is a vector connecting the center of the kth

image with the center of the considered particle, z ' is
the location of the center of the considered particle in
the barrier (Fig. 1b) and the vector function f is re-

lated to the form of the microstructure function out-
side the particle placed in an in®nite medium [3]. The
detailed formulae for the function f are given in [10].

The explicit, analytical expressions for the tensors
CTT, CTc, CcT and Ccc can be obtained by linearizing

the function F with respect to u, i.e.,

F�u� � F�0� � rF�0� � u� � � � :
This procedure resembles the so-called Rayleigh
method [20] used for deriving the e�ective properties
of the ordered arrays of spherical particles. It is also

consistent with the linearity assumption used in Eq.
(38).
After substitution of Eq. (39) into Eqs. (32)±(35)

and matching terms of the same order in u, the follow-
ing system of four equations for the unknowns CTT,
CTc, CcT and Ccc resultsÿ
1� l�TpP�

� � CTT � l�cpP� � CcT

� 1� l�Tp

�
yP� � CTT

	� l�cp

�
yP� � CcT

	
,

D�cpP� � CTT � ÿ1�D�cpP�
� � CcT

� D�Tp

�
yP� � CTT

	�D�cp

�
yP� � CcT

	
, �40�

l�cpP� � Ccc �
ÿ
1� l�TpP�

� � CTc

� l�Tp

�
yP� � CTc

	� l�cp

�
yP� � Ccc

	
,

D�TpP� � CTc � ÿ1�D�cpP�
� � Ccc

� 1�D�Tp

�
yP� � CTc

	�D�cp

�
yP� � Ccc

	
, �41�

where P� � P � �1ÿ rF�0��:
In the following sections we shall solve this set of

equations and study the solute ¯ow through the barrier
driven by two types of external forces:

. concentration gradient for uncoupled mass and heat
¯ow,

. temperature gradient for coupled mass and heat

¯ow.

4. Solute ¯ow driven by concentration gradient

For uncoupled mass and heat ¯ow, the Dufour lc

and Soret DT coe�cients are equal to zero. The con-
stants associated with the thermal and di�usive proper-
ties of suspension constituents, Eqs. (9) and (10),

assume the following form

l�Tp �
ÿ
lTp ÿ lTf

�
=lTf � sTT ÿ 1, l�cp � 0,

l�cp � 0, D�cp �
ÿ
Dcp=mÿDcf

�
=Dcf � scc=mÿ 1:
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If we substitute the above relations into Eqs. (41) and
(42), we ®nd that tensors CTc and CcT are equal to

zero. The remaining equations for the tensors CTT and
Ccc are similar to each other and the equation for CTT

is identical to the one found in the case of pure heat

conduction studied before [3,4]. Noting that the right-
hand sides of Eqs. (41) and (42) are independent of
any particular distribution of the particles, we have

solved these equations in a manner identical to that
described in [3]. Finally, substitution of the tensors
CTT, CTc, CcT and Ccc into de®nitions, Eq. (27), leads

to the following formulae for the e�ective material
functions

l�ef
T =lTf � 1� s 0TT

n
y
ÿ
1� s 0TTP�

�ÿ1o
�
h
1ÿ s 0TT

n
yP�

ÿ
1� s 0TTP�

�ÿ1oiÿ1
,

l�ef
c � 0,

D�ef
T � 0,

D�ef
c =Dcf �

ÿ
MPeq

�
1� s 0cc

n
yPeq

ÿ
1� s 0ccP�

�ÿ1o
�
h
1ÿ s 0cc

n
yP�

ÿ
1� s 0ccP�

�ÿ1oiÿ1
,

where

s 0TT � sTT ÿ 1, s 0cc � scc=mÿ 1:

The principal directions of the second order tensors P�

and P are usually di�erent and this makes estimation
of the components of lef

T and Def
c in the direction per-

pendicular to the walls laborious. Nevertheless, after
carrying out transformations of components of both
tensors from the local coordinate system associated

with the reference particle to the global coordinate sys-
tem (x, y, z ) de®ned by the walls of the barrier (Fig. 1),
the components lef�

T?, Def�
c? of the e�ective material

functions in the direction normal to the barrier become

lef�
T?=lTf �

1�
s 0TT

h�
yG1

	ÿ
1ÿ s 0TT

�
yG2

	�ÿ s 0TT

�
yG3

	�
yG4

	ihÿ
1ÿ s 0TT

�
yG2

	�ÿ
1ÿ s 0TT

�
yG5

	�ÿ s 0TT

�
yG4

	�
yG6

	i ,
�42�

Def�
c? =DTf �

ÿ
MPeq

�2641� s 0cc

h�
yG1

	ÿ
1ÿ s 0cc

�
yG2

	�ÿ s 0cc

�
yG3

	�
yG4

	ihÿ
1ÿ s 0cc

�
yG2

	�ÿ
1ÿ s 0cc

�
yG5

	�ÿ s 0cc

�
yG4

	�
yG6

	i
375,

�43�

with functions G1, . . . ,G6 given elsewhere [9]. The way

of evaluation of the ensemble averages fyGng, n =
1, . . . , 6, has also been described in detail in previous
papers [3,9].
The local values of the e�ective material functions

lef
T?, l

ef
c?, D

ef
c?, D

ef
T? and the volume fraction of the par-

ticles v vary across the barrier. The variation of v can
be determined from the formula: v�z� � fyg: Analysis

of the distribution of the local volume fraction shows
that it attains a maximum value vm in the middle of
the barrier and decreases to zero at the wall. When

particles are oriented in such a way that their major
axes are parallel to the wall, a layer of pure ¯uid sep-
arates them from the walls. Under such circumstances

the local volume fraction falls to zero before reaching
the wall. The assumed distribution of the particles
leads to a strict relation between the maximum volume
fraction vm and the mean volume fraction ~v [9]. As vm

is bounded from above by the assumption of the small
local volume fraction, this relation places limitations
on the mean particle volume fraction ~v and on the

ratio of the barrier thickness D to the length of the
particle major axis.
As mentioned previously, the problem of pure heat

¯ow through the barrier will not be considered here.
We shall now begin discussion of new results by look-
ing at the mass ¯ow of the solute.
The bulk ¯ow of the solute across the barrier, when

concentrations c1 and c2 (c1 > c2) on both faces are
given, can be evaluated from the formula

fjg � �c1 ÿ c2 �=
�D
0

dz=Def�
c? �z� �44�

which can be easily derived from Eq. (37). In order to
estimate Def�

T?�z�, components of tensor P� correspond-

ing to a particular orientation of the particles,
described by the angle g, have been determined. Then
all ensemble averaged quantities appearing in the for-
mula (43) were calculated. Finally, the integration in

Eq. (44) was carried out.
The mass ¯ux of the solute di�using through the

barrier is in¯uenced by both the microstructure of the

suspension, properties of the constituents and thickness
of the barrier. The structural parameters include the
mean volume fraction v the particles, their orientation,

aspect ratio and diameter as well as the class of shapes
of the particles. The material parameters include par-
ticle/¯uid di�usivity ratio and solubility.
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The di�usivity of the solute for the solid particles is

usually much smaller than for the ¯uid. So from two

classes of particle shapes studied, we have found that

the disk-like particles are signi®cantly more e�ective in

controlling the ¯ow of the solute by changing orien-

tation of the particles. Because of that we have focused

most of our calculations on the disk-like particles.

After studying the in¯uence of angle g of rotation of

the particles, we have found that for the disk-like par-

ticles in all cases, the maximum value of the solute ¯ux

occurred for particle axes parallel to barrier faces while

the minimum value occurred when particles were per-

pendicular. The opposite was found to be true for the

rod-like particles. All results presented in this paper

are in the form of a ratio of the maximum to the mini-

mum ¯ow of the solute. This ratio is a good measure

of the e�ectiveness of the barrier in controlling the

mass ¯ow.

All material properties of the constituents have a sig-

ni®cant e�ect on jmax=jmin: A decrease of the particle/

¯uid di�usivity ratio makes the barrier more e�ective

(Fig. 2a). An increase of the particle/¯uid solute solu-

bility m results in an increase of the barrier e�ective-

ness. The largest increase occurs for Dcs=Dcf10:1=0:3;
it decreases when Dcs=Dcf41 (Fig. 2a) as well as when

Dcs=Dcf40 (Fig. 2b).

The ratio of the barrier thickness D to the particle

diameter (2R ) has a small impact on jmax=jmin and its

role in controlling the solute ¯ux seems almost unim-

portant for practical purposes (Fig. 3a). A slight

increase in the barrier e�ectiveness has been observed

when the barrier is made thinner as compared to the

particle diameter.

The mean volume fraction ~v the particles signi®-

cantly in¯uences the solute ¯ow through the barrier

(Fig. 3b). The greater the value of ~v, the broader the

range of control of the magnitude of the solute ¯ux.

Inverse of the particle aspect ratio e � �2R�=L
appears to be the most important factor in controlling

the solute ¯ow. An increase of e leads to broadening

of the range in which the solute ¯ow may be controlled

by the particle rotation (Fig. 4a). The relation between

jmax=jmin and e has been found to be almost linear.

The assumption of space availability for rotation of

the particles in the ¯uid places additional limitation on

the maximum value of the mean particle volume frac-

tion. This condition, for the disk-like particles, can be

written as vmaxR�1=e� and, if we assume that the

admissible particle volume fraction is congruent with

this condition, then the ratio jmax=jmin varies di�erently

with the aspect ratio of the particles (Fig. 4b). The

e�ectiveness of the barrier for higher values of ~v is

now much lower and for e > 10 it attains an asymp-

totic value.

5. Solute ¯ow driven by temperature gradient

As an alternative way of controlling mass ¯ow
through the barrier, we shall consider the case when
concentration of the di�using species is the same at

both faces of the barrier and the solute ¯ow is driven
only by a temperature di�erence. This time Defour
and Soret coe�cients are not equal to zero. As has

been discussed in the previous section, the maximum

Fig. 2. Variation of the barrier e�ectiveness, de®ned as ratio

of the maximum possible solute ¯ux jmax and the minimum

possible solute ¯ux jmin, as a function of (a) particle/¯uid dif-

fusivity ratio Dcs=Dcf > 0 and solubility m, (b) solubility m

for Dcs � 0: The reader should note that change of solute ¯ux

from jmax to jmin occurs due to change in orientation of the

suspended particles.
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and the minimum mass ¯ows occur for orientations of
the particles corresponding to the axes of symmetry of

the particles being either perpendicular or parallel to
the faces of the barrier.
For both perpendicular as well as parallel orien-

tations of the particle tensors P and P� as well as ten-
sors CTT, CTc, CcT and Ccc have the same orientation
of the principal axes. We solve Eqs. (40) and (41) for

each principal component of these tensors separately
and then write the expressions for the e�ective material
constants in the direction normal to the barrier as

follows

lef
T?=lTf � 1� s 0TT

�
yCTT

	� kTs 0cT

�
yCcT

	
,

Def
T?=Dcf � kc � kcs 0Tc

�
yCTT

	� s 0cc

�
yCcT

	
,

lef
c?=lTf �

ÿ
MPeq

��
kT � kTs 0cT

�
yCcc

	� s 0TT

�
yCTc

	�
,

Def
c?=Dcf �

ÿ
MPeq

��
1� s 0cc

�
yCcc

	� kcs 0Tc

�
yCTc

	�
,

�45�
where

scT � lcs=lcf , s 0cT � scT=mÿ 1,

Fig. 4. Variation of the barrier e�ectiveness jmax=jmin for

Dcs � 0 as a function of the particle aspect ratio e (a) for the

volume fraction ~v independent of e, (b) for the maximum

value of ~v dependent on e: Estimates of the latter case quaran-

tee that the particles have enough free space to permit their

rotation.

Fig. 3. Variation of the barrier e�ectiveness jmax=jmin for

Dcs � 0 as a function of (a) the barrier thickness D=�2R�, (b)
particle volume fraction ~v: (See Fig. 2 for additional expla-

nations.)
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sTc � DTs=DTf , s 0Tc � sTc ÿ 1,

kT � lcf=lTf , kc � DTf=Dcf , �46�

and CTT, CTc, CcT and Ccc stand for components of the
respective tensors in the direction z. These components

may be calculated from the following formulae

CTT � ÿ1�D�cpP�
�
B1=Hÿ

ÿ
l�cpP�

�
B2=H,

CcT � ÿÿD�TpP�
�
B1=H�

ÿ
1� l�TpP�

�
B2=H,

CTc � ÿ
ÿ
l�cpP�

�
B4=H� ÿ1�D�cpP�

�
B3=H,

Ccc �
ÿ
1� l�TpP�

�
B4=Hÿ ÿD�TpP�

�
B3=H,

where

H � 1� ÿl�Tp �D�cp

�
P� � ÿl�TpD

�
cp ÿ l�cpD

�
Tp

��P� � 2,
B1 � E2=�E1E2 ÿ E3E4 �, B2 � E4=�E1E2 ÿ E3E4 �,

B3 � E3=�E1E2 ÿ E3E4 �, B4 � E1=�E1E2 ÿ E3E4 �,

The constants E1, E2, E3 and E4, appearing in the
above formulae, are related to the ensemble averaged

(macroscopic quantities) by the expressions

E1 � 1ÿ P�
�
l�Tp ÿ gP�

�
v=H,

E2 � 1ÿ P�
h
D�cp

�
yÿ gP�

	i
v=H,

E3 � ÿl�cpvP
�=H, E4 � ÿD�TpvP

�=H,

where

g � l�TpD
�
cp ÿ l�cpD

�
Tp:

The nondimensional material properties appearing in
Eq. (45) can be rewritten using the basic property

ratios of the particles and the ¯uid, Eq. (46), i.e.,

l�Tp �
ÿ
s 0TT ÿ kTkcs 0Tc

�
=�1ÿ kTkc �,

l�cp � kT

ÿ
s 0cT ÿ s 0cc

�
=�1ÿ kTkc �,

D�Tp � kc

ÿ
s 0Tc ÿ s 0TT

�
=�1ÿ kTkc �,

D�cp �
ÿ
s 0cc ÿ kTkcs 0cT

�
=�1ÿ kTkc �:

These material functions vary across the barrier and,
when they are known, it is possible to solve the set of

Eqs. (36) and (37) for the unknown solute ¯ux fj g:
Due to the assumption of steady state heat conduction

and mass di�usion, the heat ¯ux and the solute ¯ux
are constant. This conclusion allows one to obtain a
solution in a simple manner. The set of Eqs. (36) and

(37) has been solved for gradients of the macroscopic
temperature and concentration and, subsequently, inte-
grated utilizing the boundary conditions at the barrier

faces, i.e., known temperatures {T }1, {T }2 ({T }1 >
{T }2) and known solute concentrations {c }1, {c }2,
with {c }1 = {c }2. The resulting expression for the

dimensionless mass ¯ux of the di�using solute, when
the ¯ow is driven by temperature di�erence
�fT g1 ÿ fT g2), assumes the following form

fjg=jf � A2�D2R�
kc�A1A4 ÿ A2A3 �

where symbol jf stands for the solute ¯ux in the ¯uid
when the particles are absent and

A1 �
��D=`�
0

lef
T?�z� �=

�
lTfgef �z� �

	
dz�,

A2 �
��D=`�
0

Def
T?�z� �=

�
Dcfgef�z� �

	
dz�,

A3 �
��D=`�
0

lef
c?�z� �=

�
lTfgef �z� �

	
dz�,

A4 �
��D=`�
0

Def
c?�z� �=

�
Dcfgef �z� �

	
dz�,

where

gef �
ÿ
l�TpD

�
cp ÿ l�cpD

�
Tp

�
=�lTfDef �, z� � z=`

and ` � 2R for the disk-like particles and ` � L for
the rod-like particles.
Calculations of the dimensionless solute ¯ux follow

essentially the same procedure as in the case of pure
mass di�usion. Nevertheless, this time fj g=jf depends
not only on the structural parameters �v and e), shape
of the particles, and geometrical parameter �D=�2R�),
but also on ®ve dimensionless ratios of particle/¯uid
properties, i.e., sTT, sTc, scT, scc, m and on two dimen-
sionless parameters characterizing the role of the

coupled phenomena, i.e., kT and kc: Results of calcu-
lations for parameter values that give the highest e�ec-
tiveness of the barrier as far as control of the solute

¯ow is concerned are presented in Figs. 5±10.
The main factor a�ecting the solute ¯ux is the class

of shapes of the particles. Two classes of shapes, i.e.,

the disk-like and the rod-like particles, were studied.
Results displayed in Figs. 5±10 show that the former
class is signi®cantly more e�ective.
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The di�usion-thermo e�ect (Dufour) coe�cient lc

and the thermo-di�usion e�ect (Soret) coe�cient DT

may be either positive or negative and are usually
much smaller than the thermal conductivity lT and the
solute di�usivity Dc [19]. The Onsager reciprocal re-

lations of thermodynamics of irreversible processes
give information as to the interrelation of the two
coupled (cross) e�ects, the Defour and the Soret.

According to these relations the thermodynamic coef-
®cients of the di�usion-thermo and the thermo-di�u-
sion are equal to each other. The corresponding exper-

imental transport coe�cients in general are not the
phenomenological, thermodynamic coe�cients and the

experimental cross coe�cients do not necessarily have
to obey the Onsager relations [22]. Nevertheless, the re-
lation lTDc ÿ lcDT > f is valid.

Thermal conductivity lTs of the solid particles may
be smaller or greater than thermal conductivity lTf of
the ¯uid. The Dufour lcs and the Soret DTs coe�cients

in the solid particles are, however, much smaller than
the corresponding coe�cients lTf and Dcf in the carrier
¯uid. Also the solute di�usivity Dcs is smaller in the

Fig. 6. Variation of the barrier e�ectiveness jmax=jmin as a

function of the particle/¯uid di�usivity ratio Dcs=Dcf � scc

and the particle/¯uid thermal conductivity ratio sTT � lTs=lTf

for m = 1, kT � kc � 10ÿ3, ~v � 0:3, e�e�� � 100: (a) in the

case of disk-like particles D=�2R� � 10; (b) in the case of rod-

like particles D=L � 10:

Fig. 5. Variation of the barrier e�ectiveness jmax=jmin as a

function of the particle/¯uid di�usivity ratio Dcs=Dcf � scc

and solubility m for sTT=103, kT � kc � 10ÿ3, ~v � 0:3,
e�e�� � 100: (a) in the case of disk-like particles D=�2R� � 10;

(b) in the case of rod-like particles D=L � 10:
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particles than the solute di�usivity Dcf in the ¯uid
while the inverse relation holds for the solubility of the

solute in the particles and in the ¯uid. Thus, in the cal-
culations we have assumed that sTc and scT are both
equal to zero.

We have found that, in the case considered here, the
in¯uence of the dimensionless Dufour kT and Soret kc

coe�cients of the ¯uid on the barrier e�ectiveness

jmax=jmin is practically negligible. The barrier e�ective-

ness is, however, very sensitive to variation in the par-
ticle/¯uid di�usivity scc, thermal conductivity sTT and

the solute solubility m ratios. It decreases with an
increase of scc and sTT (Fig. 5). The barrier is most
e�ective for scc � Dcs=Dcf � 0: An increase in the

solute solubility also causes an increase in jmax=jmin but
does not exceed the corresponding values for scc � 0
(Fig. 6).

For the rod-like particles and certain values of par-
ameters scc, sTT and m, the e�ectiveness of the barrier
attains values smaller than unity (Fig. 5b and 6b). This

result suggests that for jmax=jmin < 1, it is necessary to
rotate axes of the rod-like particles from being perpen-

Fig. 8. Variation of the barrier e�ectiveness jmax=jmin as a

function of the particle volume fraction and solubility m for

sTT � 103, scc � 0, kT � kc � 10ÿ3, e�e�� � 100: (a) in the

case of disk-like particles D=�2R� � 10; (b) in the case of rod-

like particles D=L � 10:

Fig. 7. Variation of the barrier e�ectiveness jmax=jmin as a

function of nondimensional thickness of the barrier and solu-

bility m for sTT � 103, scc � 0, kT � kc � 10ÿ3, e�e�� � 100,

~v � 0:3: (a) in the case of disk-like particles (nondimensional

thickness is de®ned as D=2R); (b) in the case of rod-like par-

ticles (nondimensional thickness is de®ned as D=L).
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dicular to being parallel to the barrier faces in order to

increase the solute ¯ux.

The ratio of the barrier thickness D to the main par-

ticle dimension (2R for the disk-like particles and L for

the rod-like particles), although not signi®cant in ab-

solute terms, has a greater in¯uence on the barrier

e�ectiveness than in the pure di�usive case (Fig. 7). An

increase in the solute solubility m leads to an increase

in jmax=jmin:
The mean volume fraction ~v of the particles is a sig-

ni®cant factor in controlling solute ¯ow (Fig. 8). The

greater the value of the mean volume fraction ~v of the

particles, the broader the range of control of the solute

¯ow. An increase in solubility m of the solute leads to

an increase in the barrier e�ectiveness. This e�ect is
greater for the rod-like particles than for the disk-like

particles.
Particle aspect ratio appears to be one of the most

important factors in controlling the solute ¯ow (Fig. 9).

An increase of e in the case of the disk-like particles
�e� in the case of the rod-like particles) leads to a
broadening of the range in which the solute ¯ux may

be controlled by the particle rotation. An increase in
the solute solubility again a�ects the barrier e�ective-

Fig. 9. Variation of the barrier e�ectiveness jmax=jmin as a

function of the particle aspect ratio e�e�� and solubility m for

sTT � 103, scc � 0, kT � kc � 10ÿ3, ~v � 0:3: (a) in the case of

disk-like particles D=�2R� � 10; (b) in the case of rod-like par-

ticles D=L � 10:

Fig. 10. Variation of the barrier e�ectiveness jmax=jmin as a

function of the particle aspect ratio e�e�� and solubility m for

sTT � 103, scc � 0, kT � kc � 10ÿ3 and ~v limited by the

requirement that the particles have enough free space to per-

mit their rotation (the relation between ~v and e�e�� is similar

to the one utilized in Fig. 4b): (a) in the case of disk-like par-

ticles D=�2R� � 10; (b) in the case of rod-like particles

D=L � 10:
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ness more for the rod-like particles than for the disk-
like particles.

For higher volume fraction of the particles, the
requirement of availability of su�cient space to permit
rotation of the particles leads to limitations on the

maximum permissible volume fraction ~v: For the disk-
like particles, this limit is identical with the one given
in the previous section, while for the rod-like particles

it can be written as ~vmaxR2=�3e��: If these limitations
are taken into account, the barrier e�ectiveness is sig-
ni®cantly reduced (Fig. 10).

6. Conclusions

The e�ective medium theory has been derived for
the coupled phenomena of heat conduction and mass

di�usion of the solute in a heterogeneous medium
made of two constituents. Ideal thermal contact and
di�usive conditions at the interfaces of the constituents

were assumed but di�erent solubilities of the solute in
each constituent was permitted. It has been found that
the relations between the macroscopic heat and solute
¯uxes and the macroscopic temperature and concen-

tration in the medium were generally nonlocal and
that they reduce to the local form only for slowly vary-
ing macroscopic temperature and concentration ®elds.

In this particular case, the relations assume the forms
that are identical to those valid inside each constituent.
The e�ective material functions, which appear in the

macroscopic relations between the heat and mass ¯uxes
and the temperature and concentration gradients, are
dependent on the bulk dimension of the medium. Only

at a certain distance away from the boundary, with
this distance being of the order of the greatest microdi-
mension, they may be treated as the e�ective properties
of the heterogeneous medium. These e�ective proper-

ties depend on the details of the microstructure of the
heterogeneous medium and on the all thermal and dif-
fusive properties of the constituents.

The theory has been applied to the problem of con-
trol of solute ¯ow using a smart barrier. The barrier is
made of suspension of spheroidal particles randomly

distributed in a carrier ¯uid resulting in variation of its
thermal and di�usive properties. A change of the e�ec-
tive material properties is achieved by externally
induced change in the orientation of the particles. The

analysis has been limited to the cases of solute ¯ux
being driven by: (i) concentration di�erence with
coupled phenomena neglected, and (ii) temperature

di�erence. Results of the analysis indicate that the bar-
rier may be e�ective in controlling the mass ¯ow of the
di�using species provided that a proper combination

of the particles (with proper shape, size and properties)
and carrier ¯uid are chosen. Two classes of particle
shapes were studied, i.e., rod-like particles and disk-

like particles. The results show that the latter one pro-
vides a much wider range of control of the solute ¯ux,

i.e., higher barrier e�ectiveness, for both cases of the
concentration di�erence and temperature di�erence
driven ¯ows. The barrier e�ectiveness also increases

for higher volume fraction of the particles, higher
aspect ratio of the particles and smaller thickness of
the barrier (as compared to the major particle dimen-

sion). Greater value of solubility of the solute in the
¯uid than in the solid particles, smaller ratios of par-
ticle/¯uid di�usivity and particle/¯uid thermal conduc-

tivity also contribute to an increase of the e�ectiveness
of the barrier.
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Appendix A

For equilibrium distribution of concentration in the
heterogeneous medium, i.e., for

T � fTg � const, fcg � const: �A1�
the distribution of the concentration of the di�using
species can be expressed as

c�x� � Peq�x�fcg: �A2�

When Eq. (A2) is substituted into Eq. (15), the latter
equation reduces to

M�x, O�Peq�x, O� �
�
M�x�Peq�x�

	 � const: �A3�

Noting, from Eq. (A2), that the following relation

holds�
Peq�x�

	 � 1,

the equilibrium distribution function can be written as

Peq�x� � 1�
m�1ÿ v� � v

�y�x� � m�
m�1ÿ v� � v

��1ÿ y�x��:
�A4�

When the equilibrium conditions in the medium are
not met, the concentration can be expressed as

c�x� � Peq�x�fcg � c 0�x� �A5�

where the last term stands for the ¯uctuation of the
concentration. Substituting the above expression into
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the left-hand side of Eq. (15), simplifying the result
using the following property

fMc 0 g � fcg
and carrying out the ensemble averaging of the result-
ing equation, one obtains the following relation

fMcg �MPeqfcg: �A6�
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